Electrothermal Characterization of an AC Thermal Plasma Torch

Alexander Zielinski¹, Harry Fair², Reginald Allen², Trey Gebhart³, John Echols³, Joshua Nowak⁴, Leigh Winfrey³ and Mohamed Bourham⁵

¹TezlaTec LLC, Austin, TX
²Institute for Strategic & Innovative Technologies, Austin, TX,
³Virginia Polytechnic Institute and State University, Nuclear Engineering Program, Blacksburg, VA,
⁴North Carolina State University, Department of Mechanical & Aerospace Engineering, Raleigh NC,
⁵North Carolina State University, Department of Nuclear Engineering, Raleigh NC

2012 Gaseous Electronics Conference (GEC), Austin, TX, 22-26 October 2012

- A unique, single-phase torch for gasification studies.
- Power supplied from the electric mains, stepped up to 6 kV.
- The torch uses gas flow to complement the electrical energy transfer.
- The output of the torch is a thermal source at or near local thermodynamic equilibrium (LTE).
- Electrical operation of the torch is characterized by the Volt-Ampere relation to determine the power rating of the torch and diagnosing the dynamic behavior of the plasma.
- Plasma current is measured by a current transformer and the voltage is via an isolated voltage divider.
- Optical emission spectroscopy, with the assumption of LTE, is used to determine the plasma kinetic temperature using the relative line method.

Plasma Torch and Channels

0.478 cm (0.188")

Zielinski, Fair, Allen, Gebhart, Echols, Winfrey, Nowak, Bourham "Electrothermal Characterization of an AC Thermal Plasma Torch", GEC 2012

22 cm (8.625")

Electrical Measurements

- Power supply primary side current and voltage with DVM's
 - Torch current: Pearson model 410 current transformer (0.1V/A)
 - Torch voltage: Isolated technique using 410 current transformer and resistor string in parallel with torch (4332:1)

Typical Single-Cycle Torch Data

- Voltage and Current
 - Air at 9.3 cfm with a nozzle

Typical Volt-Ampere Characteristic

- Highly dynamic and sensitive to di/dt
- Minimum resistance ~ 72 Ω , time-integral average ~ 172 Ω

Summary of Minimum Plasma Resistance

- Nozzle reduces the plasma torch resistance
- Nozzle extends the operation over a larger range of gas flow rates

Typical Steady-State Electrical Power

Average peak power = 19.1 kW, +/- 5.7%

Plasma Current versus Voltage

Torch power versus gas flow rate

Optical Emission Spectral Measurements

Spectra taken at upper and lower channels and down stream looking at the nozzle at various gas flow rates

Two Ocean Optics HR2000 fixed grating spectrometers

- The UV-VIS HR2000 spectrometer has a range of 300 nm to 736 nm with a 600 line/mm grating blazed at 500 nm
- The VIS-NIR HR2000 spectrometer has a range of 600 nm to 1025 nm with a 600 line/mm grating blazed at 750 nm
- Spectrometers are power calibrated using Ocean Optics LS-1-CAL lamp
- Collected spectral data were analyzed using PeakFit spectra package to determine the emission, and/or absorption lines

Optical Emission Spectral Measurements

Spectra taken at upper and lower channels and down stream looking at the nozzle at various gas flow rates between 8 to 17.5 cfm

Spectra taken at the lower front of the torch with <u>Air</u> as the working gas at 9.33cfm flow rate

Spectra taken at the lower front of the torch 1-inch from the exit with <u>Air</u> as the working gas at 9.33cfm flow rate

Spectra taken at the lower front of the torch with <u>Argon</u> as the working gas at 9.33cfm flow rate

Plasma temperature measured down-bore from the nozzle as a function of the gas flow rate and at 38cm/18kW for air and 46cm/3kW for Argon

Plasma temperature calculated form H_{α} lines on the upper and lower sides of the torch as a function of the distance from the torch side for Air with the torch operating at 19kW

Plasma temperature down-bore from the nozzle versus resistance obtained from I-V data for Air (18kW at 38cm) and Argon (3kW at 46cm)

Temperature Evaluation form Simple Plasma Resistivity Model

- Plasma temperature down-bore is the boundary layer temperature
- Plasma is weakly nonideal, however, the ideal Spitzer model is satisfactory with correction to the Coulomb logarithm (such plasmas are in the $ln\Lambda \approx 5-6$
- For the torch configuration the plasma temperature can be calculated form the resistivity (calculated form the measured from the current-voltage data)

Torch channel length = 22cm Torch diameter = 3.2cm

Model equation for temperature:

$$T_{(eV)} = \left(\frac{71.06 \times 10^{-3}}{R_{(\Omega)}}\right)^{2/3}$$

 $R_{(\Omega)}$ is plasma resistance from electrical measurements

There is good correlation between the temperature obtained from spectroscopy and the temperature calculated from resistivity

Plasma temperature for Argon torch down-bore from the nozzle (3kW at 46cm) versus gas flow rate as calculated form optical emission spectra and from the resistivity model

ETFLOW Code Run for Plasma Torch

- ETFLOW code is an electrothermal (ET) plasma code that can run in ablative, non-ablative and combustion regimes*, it runs in pulsed mode, however extension of pulse length is available in the code**.
- Code results indicates 0.4eV plasma temperature at the channel exit, which correlates to temperatures obtained from spectroscopy and from resistivity model. Exit Total number density is ~ 1.5 x 10²⁴/m³

*Winfrey et al., IEEE Trans. Plasma Science, Vol.40, No.3, pp.843-852, 2012

**"Winfrey et al. J. Fusion Energy, DOI 10.1007/s10894-012-9578-5, 2012,

Summary

- Unique, dual-channel, high-voltage single phase plasma torch was characterized
- Argon torch can operate at 3kW considerably lower than Air torch (18kW)
- Volt-Ampere characteristic indicates plasma is stable up to 10 kW, marginally stable up to 15 kW, and unstable above 15 kW.
- Minimum plasma resistance ~ 70 Ω .
- Use of a nozzle extends operating regime over a wider range of gas flow rates

- Spectral data indicates plasma temperature in the range of 0.4-0.6eV downstream, which correlates well to temperature from resistivity model (slightly nonideal).
- Initial code results showed about 0.4eV plasma temperature downstream.
- Further experiments and modeling are planned to determine torch optimized operational parameters.